Learning Acyclic Directed Mixed Graphs from Observations and Interventions
نویسنده
چکیده
We introduce a new family of mixed graphical models that consists of graphs with possibly directed, undirected and bidirected edges but without directed cycles. Moreover, there can be up to three edges between any pair of nodes. The new family includes Richardson’s acyclic directed mixed graphs, as well as Andersson-Madigan-Perlman chain graphs. These features imply that no family of mixed graphical models that we know of subsumes the new models. We also provide a causal interpretation of the new models as systems of structural equations with correlated errors. Finally, we describe an exact algorithm for learning the new models from observational and interventional data via answer set programming.
منابع مشابه
Characterization and Greedy Learning of Interventional Markov Equivalence Classes of Directed Acyclic Graphs (Abstract)
The investigation of directed acyclic graphs (DAGs) encoding the same Markov property, that is the same conditional independence relations of multivariate observational distributions, has a long tradition; many algorithms exist for model selection and structure learning in Markov equivalence classes. In this paper, we extend the notion of Markov equivalence of DAGs to the case of interventional...
متن کاملTowards Optimal Learning of Chain Graphs
In this paper, we extend Meek’s conjecture (Meek, 1997) from directed and acyclic graphs to chain graphs, and prove that the extended conjecture is true. Specifically, we prove that if a chain graph H is an independence map of the independence model induced by another chain graph G, then (i) G can be transformed into H by a sequence of directed and undirected edge additions and feasible splits ...
متن کاملCharacterization and Greedy Learning of Interventional Markov Equivalence Classes of Directed Acyclic Graphs
The investigation of directed acyclic graphs (DAGs) encoding the same Markov property, that is the same conditional independence relations of multivariate observational distributions, has a long tradition; many algorithms exist for model selection and structure learning in Markov equivalence classes. In this paper, we extend the notion of Markov equivalence of DAGs to the case of interventional...
متن کاملMarkov Properties for Acyclic Directed Mixed Graphs
We consider acyclic directed mixed graphs, in which directed edges (x → y) and bi-directed edges (x ↔ y) may occur. A simple extension of Pearl’s d-separation criterion, called m-separation, is applied to these graphs. We introduce a local Markov property which is equivalent to the global property resulting from the m-separation criterion.
متن کاملActive Learning of Causal Networks with Intervention Experiments and Optimal Designs
The causal discovery from data is important for various scientific investigations. Because we cannot distinguish the different directed acyclic graphs (DAGs) in a Markov equivalence class learned from observational data, we have to collect further information on causal structures from experiments with external interventions. In this paper, we propose an active learning approach for discovering ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016